全球聚焦:使用PyTorch 2.0 加速Hugging Face和TIMM库的模型
点蓝色字关注“机器学习算法工程师”
设为星标,干货直达!
(相关资料图)
PyTorch 2.0引入了**torch.compile()**来加速模型,这篇文章我们将介绍如何使用**torch.compile()**来加速Hugging Face和TIMM库的模型。
torch.compile() 使得尝试不同的编译器后端变得容易,从而使用单行装饰器 torch.compile() 使 PyTorch 代码更快。它可以直接在 nn.Module 上工作,作为 torch.jit.script() 的直接替代品,但不需要您进行任何源代码更改。我们希望这一行代码更改能够为您已经运行的绝大多数模型提供 30%-2 倍的训练时间加速。
opt_module=torch.compile(module)
torch.compile 支持任意 PyTorch 代码、控制流、变异,并带有对动态形状的实验性支持。我们对这一发展感到非常兴奋,我们将其称为 PyTorch 2.0。
这个版本对我们来说不同的是,我们已经对一些最流行的开源 PyTorch 模型进行了基准测试,并获得了 30% 到 2 倍的大幅加速(见https://github.com/pytorch/torchdynamo/issues/681) 。
这里没有技巧,我们已经 pip 安装了流行的库,比如https://github.com/huggingface/transformers, https://github.com/huggingface/accelerate 和 https://github.com/rwightman/pytorch-image-models等流行的库,然后对它们运行 torch.compile() 就可以了。
很难同时获得性能和便利性,但这就是核心团队发现 PyTorch 2.0 如此令人兴奋的原因。Hugging Face 团队也很兴奋,用他们的话说:
TIMM 的主要维护者 Ross Wightman:“PT 2.0 开箱即用,适用于推理和训练工作负载的大多数 timm 模型,无需更改代码。”
Sylvain Gugger 是 transformers 和 accelerate 的主要维护者:“只需添加一行代码,PyTorch 2.0 就可以在训练 Transformers 模型时提供 1.5 到 2.x 的加速。这是引入混合精度训练以来最激动人心的事情!”
本教程将向您展示如何使用这些加速,这样您就可以像我们一样对 PyTorch 2.0 感到兴奋。
安装教程对于 GPU(新一代 GPU 的性能会大大提高):
pip3installnumpy--pretorch--force-reinstall--extra-index-urlhttps://download.pytorch.org/whl/nightly/cu117
对于CPU:
pip3install--pretorch--extra-index-urlhttps://download.pytorch.org/whl/nightly/cpu
当安装好后,你可以通过以下方式来进行验证:
gitclonehttps://github.com/pytorch/pytorchcdtools/dynamopythonverify_dynamo.py
另外一种安装方式是采用docker,我们还在 PyTorch nightly 二进制文件中提供了所有必需的依赖项,您可以使用它们下载:
dockerpullghcr.io/pytorch/pytorch-nightly
对于临时实验,只需确保您的容器可以访问所有 GPU:
dockerrun--gpusall-itghcr.io/pytorch/pytorch-nightly:latest/bin/bash使用教程
让我们从一个简单的例子开始,一步步把事情复杂化。请注意,您的 GPU 越新,您可能会看到更显着的加速。
importtorchdeffn(x,y):a=torch.sin(x).cuda()b=torch.sin(y).cuda()returna+bnew_fn=torch.compile(fn,backend="inductor")input_tensor=torch.randn(10000).to(device="cuda:0")a=new_fn()
这个例子实际上不会运行得更快,但它具有教育意义。
以 torch.cos() 和 torch.sin() 为特色的示例,它们是逐点操作的示例,因为它们在向量上逐个元素地进行操作。你可能真正想要使用的一个更著名的逐点运算是类似 torch.relu() 的东西。eager模式下的逐点操作不是最优的,因为每个操作都需要从内存中读取一个张量,进行一些更改,然后写回这些更改。
PyTorch 2.0 为您所做的最重要的优化是融合。
回到我们的示例,我们可以将 2 次读取和 2 次写入变成 1 次读取和 1 次写入,这对于较新的 GPU 来说尤其重要,因为瓶颈是内存带宽(您可以多快地向 GPU 发送数据)而不是计算(您的速度有多快) GPU 可以处理浮点运算)。
PyTorch 2.0 为您做的第二个最重要的优化是 CUDA graphs。CUDA graphs有助于消除从 python 程序启动单个内核的开销。
torch.compile() 支持许多不同的后端,但我们特别兴奋的一个是生成 Triton 内核(https://github.com/openai/triton,用 Python 编写的,但性能优于绝大多数手写的 CUDA 内核)的 Inductor。假设我们上面的示例名为 trig.py,我们实际上可以通过运行来检查代码生成的 triton 内核:
TORCHINDUCTOR_TRACE=1pythontrig.py
@pointwise(size_hints=[16384],filename=__file__,meta={"signature":{0:"*fp32",1:"*fp32",2:"i32"},"device":0,"constants":{},"configs":[instance_descriptor(divisible_by_16=(0,1,2),equal_to_1=())]})@triton.jitdefkernel(in_ptr0,out_ptr0,xnumel,XBLOCK:tl.constexpr):xnumel=10000xoffset=tl.program_id(0)*XBLOCKxindex=xoffset+tl.reshape(tl.arange(0,XBLOCK),[XBLOCK])xmask=xindex你可以验证融合这两个 sins 确实发生了,因为这两个 sin 操作发生在一个单一的 Triton 内核中,并且临时变量保存在寄存器中,可以非常快速地访问。
下一步,让我们尝试一个真实的模型,比如来自 PyTorch hub 的 resnet50。
importtorchmodel=torch.hub.load("pytorch/vision:v0.10.0","resnet18",pretrained=True)opt_model=torch.compile(model,backend="inductor")model(torch.randn(1,3,64,64))如果您实际运行,您可能会惊讶于第一次运行很慢,那是因为正在编译模型。后续运行会更快,因此在开始对模型进行基准测试之前预热模型是常见的做法。
您可能已经注意到我们如何在此处使用“inductor”显式传递编译器的名称,但它不是唯一可用的后端,您可以在 torch._dynamo.list_backends() 中运行以查看可用后端的完整列表。为了好玩,您应该尝试 aot_cudagraphs 或 nvfuser。
现在让我们做一些更有趣的事情,我们的社区经常使用来自 transformers (https://github.com/huggingface/transformers) 或 TIMM (https://github.com/rwightman/pytorch-image-models)的预训练模型和我们的设计之一PyTorch 2.0 的目标是任何新的编译器堆栈都需要开箱即用,可以与人们实际运行的绝大多数模型一起工作。因此,我们将直接从 Hugging Face hub 下载预训练模型并对其进行优化。
importtorchfromtransformersimportBertTokenizer,BertModel#Copypastedfromherehttps://huggingface.co/bert-base-uncasedtokenizer=BertTokenizer.from_pretrained("bert-base-uncased")model=BertModel.from_pretrained("bert-base-uncased").to(device="cuda:0")model=torch.compile(model)#Thisistheonlylineofcodethatwechangedtext="Replacemebyanytextyou"dlike."encoded_input=tokenizer(text,return_tensors="pt").to(device="cuda:0")output=model(**encoded_input)如果您从模型和 encoded_input 中删除 to(device="cuda:0") ,那么 PyTorch 2.0 将生成 C++ 内核,这些内核将针对在您的 CPU 上运行进行优化。你可以检查 Triton 或 C++ 内核的 BERT,它们显然比我们上面的三角函数示例更复杂,但如果你了解 PyTorch,你也可以类似地浏览它并理解。
相同的代码也可以https://github.com/huggingface/accelerate 和 DDP 一起使用。
同样让我们尝试一个 TIMM 示例:
importtimmimporttorchmodel=timm.create_model("resnext101_32x8d",pretrained=True,num_classes=2)opt_model=torch.compile(model,backend="inductor")opt_model(torch.randn(64,3,7,7))我们使用 PyTorch 的目标是构建一个广度优先的编译器,该编译器将加速人们在开源中运行的绝大多数实际模型。Hugging Face Hub 最终成为我们非常有价值的基准测试工具,确保我们所做的任何优化实际上都有助于加速人们想要运行的模型。
本文翻译自https://pytorch.org/blog/Accelerating-Hugging-Face-and-TIMM-models/
- 全球聚焦:使用PyTorch 2.0 加速Hugging Face和TIMM库的模型
- 义翘神州董秘回复:细胞与基因治疗具备多种优势,未来发展潜力巨大 观点
- 天天观热点:浙江部分地区外卖行业运力缺口近40% 倡导市民参与配送
- 以岭药业:网传“连花清瘟防疫方”等消息不实
- 华夏消费ETF净值上涨1.15% 请保持关注
- 《穆谢特》,每一个细微的举动,都有一种庄严的感觉_今日热闻
- 金地集团董事长凌克:建立精细化经营能力穿越周期
- 12部门联合开展2023年“春暖农民工”服务行动|全球即时看
- 洪雅县:支部联支部铺就林农绿色“致富路”
- 智慧养鱼 致富乡村-世界时讯
- 环球快报:发布变更又快又稳?腾讯运维工程师经验首发
- 环球热点评!歌尔股份董秘回复:公司暂无涉及自主品牌VR业务的规划
- 2022河南服务业企业100强公布,谁是No.1?(附全名单) 全球热闻
- 今日快讯:太康这对兄妹“疫”线相遇 相约疫情结束一同回家看父母
- 小赢卡贷借款逾期35年延迟还款会不会上征信_天天新要闻
- 拟处罚30万元!海淀查处首例高价销售抗原试剂盒案件-今日报
- 茨实煮多久 芡实一般煮多长时间
- 每日头条!菜鸟调集第四批快递员抵京进行药品等物资配送
- 万润股份:“万润工业园二期C01项目”截至2022年6月30日工程进度达30%,目前正在积极推进中 环球今热点
- 世界最资讯丨城市综合实力:东京第3,上海第10
- 创维数字董秘回复:公司旗下子公司创维新世界成立于2017年
- 我国首个核能工业供热项目建成投用:今日讯
- 全球看点:神州数码: 关于预计2023年度日常关联交易的公告
- 老城区侨联:开展亲子活动 烘焙幸福味道:世界要闻
- 天天精选!2022年哪些条件利于女方取得抚养权呢
- 环球快资讯:同和药业:公司的解热镇痛及非甾体抗炎镇痛药有醋氯芬酸原料药和塞来昔布原料药
- 花园生物董秘回复:目前公司还没有生产治疗新冠药物的计划 当前简讯
- 环球看热讯:宏景科技: 薪酬与考核委员会工作细则
- 中国移动总经理董昕到海南白沙开展乡村振兴调研
- 全球热推荐:大兴安岭森林消防支队召开誓师大会,积极动员赶赴湖南省机动驻防